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Abstract 
Two players engaged in the Prisoner’s Dilemma have to choose between cooperation and 
defection, the pay-off of the players is determined by a weight w=(T ,R ,P ,S ) . For deterministic 
strategies p 1 ,… , p n  we consider a society  S=S( u i : p i∣ i=1 ,… ,n)  formed 

by  individuals playing at random the IPD with weight w . We introduce the 
concept of a w -successful society as one where all individuals have eventually a non-negative 
pay-off. We discuss success of individuals and societies by means of quadratic forms associated 
to the pay-off matrix of the given set of strategies. 

Keywords 
• Prisoner’s Dilemma;  
• Iterated Prisoner’s Dilemma;  
• Successful societies;  
• Weakly positive quadratic forms 

 

1. Introduction 
Since its formulation in 1950, the Prisoner’s Dilemma has become the leading metaphor to 
investigate rationales for cooperation (see [1], [4] and [7] for extensive literature lists). Two 
players engaged in the Prisoner’s Dilemma have to choose between cooperation and defection. 
The players confront each other indefinitely often, receiving in each round R  points if they both 
cooperate and P  points if they both defect; moreover, a defector exploiting a cooperator 
receives T  points, while the cooperator receives only Spoints. It is assumed 
that T>R>0>P>S  and 0>T+S , the last condition implying that it is not worth for a player to 
cooperate and defect alternatively while the coplayer is cooperating. A 
tuple w=(T ,R ,P ,S )satisfying the above conditions is called an admissible weight. 
The iterated Prisoner’s Dilemma (IPD) offers rich possibilities for ingenious strategies. Most of 
the literature on the topic deals only with stochastic strategies (see for example [7] and [8]). 
A deterministic strategy  p=({ a 0 , a 1 ,… , a n } , f 0 , f 1 , s )  is given by a finite set { a 0 , a 1 ,… , a n }  of states, 
where a 0  is a distinguishedinitial state  ; f 0  and f 1  are transition functions   of the states and s  is 
the outcome function assigning 0 or 1 to each state, where 1 stands for cooperating and 0 for 
defecting. Hence a deterministic strategy is a finite automaton (see  [2]). 



Deterministic strategies may be depicted as finite oriented valued digraphs, as in the following 
examples, where →  indicates the initial state and the values of s  are written on the vertices. 
Strategy TFT is the famous tit-for-tat strategy: cooperate in the first round, then do whatever the 
other did last time. Since the well-known Axelrod’ s tournaments [1], tit-for-tat has been 
considered the major paradigm of altruistic behaviour [4] and [5]. Strategy PAV (for Pavlov) was 
introduced by Nowak and Sigmund [9] and shown to outperform TFT in computer runned 
simulations of heterogeneous sets of probabilistic strategies. Our computer programs show that 
the intolerant strategy  I 0  outperforms all deterministic strategies with two states 
and I 1  outperforms all deterministic strategies with at most three states. 
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Let p 1 ,… , p n  be deterministic strategies and consider a society  S=S( u i : p i | i=1 ,… ,n)  formed 

by  individuals playing at random the IPD with admissible weight w  (i.e. in each 

round, two individuals are chosen randomly to play the next step of the corresponding IPD, each 
individual recalling their last play against one another and responding accordingly), among 
them, 0< u i  individuals use strategy p i . We shall assume that there is an unlimited number of 
rounds, all occurring with probability one. (For certain considerations of the IPD it is assumed, 
see  [1], that the next round happens with probabilityw<1 . The limiting case w=1  is usually of 

great interest, see  [8] for a discussion). Many interesting problems arise from the consideration 

of the terminal pay-off   of an individual x  in the society S , 
where g ( t ) ( x )  is the pay-off accumulated by x  in the first t  rounds. Observe that, for the sake of 

simplicity, we omit the dependence on the parameter w , but we may write  for g S ( x )  if 
we want to stress the parameter w  of the IPD. 
In Section 2, we show that in case the individual x  uses strategy p i , then 
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where g( p i : p j )  is the terminal pay-off   of p i  relative to p j . We shall consider the pay-off matrix   of 
the society S  as the n×n -matrix G=(g( p i : p j ) )  (we write G ( w ) =(g ( w ) ( p i : p j ) )  in case we want to 
make explicit the parameter w . According to Maynard Smith  [6], a strategy is evolutionary 
stable   if an infinite homogeneous population adopting it (i.e. n=1  and S=S( u 1 : p 1 ) , for u 1≫0 ) 
cannot be invaded by mutants. We generalize the concept and say that a 
society S=S( u i : p i | i=1 ,… ,n)  is stable   if any individual of S  performs, at the long run, better 
keeping its strategy than changing to a new one. In Section  3 we prove that for a set p 1 ,… , p n  of 

retaliatory strategies with , any 
society S( u i : p i | i=1 ,… ,n)  is stable. We recall that a 
strategy p=({ a 0 , a 1 ,… , a n } , f 0 , f 1 , s )  isretaliatory   if s ( f 0 (a ) )=0  for any state a . This result 
generalizes the observation in  [1] that TFT is an ESS. 
We shall say that a society S=S( u i : p i | i=1… ,n)  is w -successful   if for any individual x  of S  we 

have . It will be easy to show that S  is w -successful if and only 
if G ( w ) u≥ (g ( w ) ( p i : p i ) : i=1 ,… ,n)≕g ( w )  as column vectors. This gives conditions on the 
matrix G ( w )  for the existence of vectors uwith all entries u i >0 , ( i=1 ,… ,n)  such 
that S( u i : p i | i=1 ,… ,n)  is w -successful. We shall say that S  is w -macro-

successful   if , for any selection of 
individuals x i  with strategy . Clearly, an individual x  is w -successful in the 
society S  if at the long run its pay-off increases. In the same way, the society S  is w -macro-
successful if the total pay-off (the sum of the pay-offs of its ‘citizens’) eventually increases. 

In Section 4, we introduce the quadratic form  associated with the 

symmetric matrix  and show that S( u i : p i | i=1 ,… ,n)  is w -macro-

successful if and only if . 
Finally, S( u i : p i | i=1 ,… ,n)  is w -macro-successful for any choice of numbers u 1 ,… , u n  with big 

enough  if and only if the quadratic form  is weakly 

positive  , that is  for any vector 0≠ ( v 1 ,… , v n )∈N n . We give 

conditions on the matrix  characterizing the weak positivity 

of . 
Clearly, the concepts of success for individuals in a society S  or that of successful societies 
depend on the chosen parameters T ,R ,P  and S . The relativity of the concepts stresses the fact 



that the pay-off of strategies playing the IPD depend as much on the structure of the strategies 
themselves as on the setting of the game. Observe the particular role played by 0 in the 
definitions: an individual playing the strategy pagainst an individual playing the strategy p′  is w -
successful   (in this game) if and only if the pay-off g ( w ) (p :p ′ )≥0 . For further remarks see 
Section  5. 

2. Deterministic strategies 

2.1. 

Recall that a deterministic strategy  p  is a tuple ( { a 0 , a 1 ,… , a n } , f 0 , f 1 , s )  where { a 0 , a 1 ,… , a n }  is a 
finite set of states, with a 0  a distinguished initial 
state  ,  and 

 are transition functions   of the states 
and  the outcome function. 
Given two deterministic strategies 

p=({ a 0 ,… , a n } , f 0 , f 1 , s )  
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define the tournament  t (p :p′ )  as an oriented graph with j th vertex 
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with ,  and arrows 
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We identify α j  with . In other words, t (p :p′ )  is the orbit of ( a 0 , b 0 )  under the 

function 
f× f′ : { a 0 ,… , a n }× { b 0 ,… , b m }→ { a 0 ,… , a n }× { b 0 ,… , b m }  
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where . Therefore t (p :p′ )  has the shape 
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with q≤nm . It is clear that 
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is the terminal pay-off   of p  relative to p′ , where  and g i (p :p′

)=g(α i )  is the pay-off of p  relative to p′  at the i th step of the IPD 
(where g(1 :1 )=R , g(0 :0 )=P , g(0 :1 )=T  andg(1 :0 )=S ) and c (p :p′ )  is the length of the 
cycle in the orbit. For examples see Section  5. 

2.2. 
Let S  be a society with u  individuals. Society S  plays random IPD  as follows: consider two 
different individuals x  and y , x  playing with strategy p  and y  playing with strategy p′ . At round t , 
the couple ( x , y )may not be confronted, then the pay-off g t ( x :y )=0 . In case x  and y  are 
confronted for the j th time, then the tournament t (p :p′ )  yields the arrow 
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and therefore g t ( x :y )= g j (p :p′ ) . That is, each player keeps track of past play against all 

individual players. 
Lemma. 
The expected value  g t ( x :y ) is 
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where  . 
Proof. 



Let p( t , k )  be the probability to select the couple ( x , y )  at the round t  for the k th time. Out 

of  possible selections of couples, couple ( x , y )  is selected k  times, the other t−k  times any 

of the remaining couples is selected. Then 
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Hence, 

, 
which is the desired expression.  □ 

2.3. 
There is an interesting consequence of (2.2): an individual x  with 
strategy ( { a 0 ,… , a n } , f 0 , f 1 , s )  may profit for a long while from a confident homogeneous 
society S  acting with strategy p ′ =({ b 0 ,… , b m } , g 0 , g 1 , s ′ )  if s ( a 0 )=0 , s ′ ( b 0 )=1  and S  is large 
enough. More precisely, let u  be the number of individuals in S . 

Lemma. 

We have  g ( t ) ( x :y )≥0as long as  . 
Proof. 
By hypothesis g 1 (p :p′ )=T  and clearly, g i (p :p′ )≥S  for i≥2 . Then 
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Therefore g ( t ) ( x :y )≥0  if and only if .  □ 

For a numerical example, consider T=2 , S=−3 , for u≫0 , , 

then g ( t ) ( x :y )>0  for . 

2.4. 

The next Proposition only expresses the fact that, after a preperiod, all the confrontations 
between individuals enter in a tournament-cycle determined by their strategies. 

Proposit ion. 



Let  S=S( u i : p i | i=1 ,… ,n)and  xbe an individual of  Swith strategy  p i . Let  be 
the total population of  S . Then 
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Proof. 
Let x j  be an individual of S  with strategy p j . Then 
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if all limits exist. 
Recall that 
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Moreover g k 0 + k c + m ( p i : p j )= g k 0 + m ( p i : p j ) , for c  the length of the tournament-
cycle,c=c( p i : p j )>m≥0  and k 0  the length of the preperiod in the tournament t (p :p′ ) . 
Consider | g k ( p i : p j ) |≤γ  for k=1 ,… , k 0  and 
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hence . 
Therefore 
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and . 
Hence 
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The proof is complete.  □ 

3. Stability 

3.1. 
Let w=(T ,R ,P ,S )  be an admissible weight. In the next sections it will be of importance to make 
explicit the parameter w . Let p 1 ,… , p n  be deterministic strategies. A 
society S=S( u i : p i | i=1 ,… ,n)  is said to be be w -stable   if for every individual x  in S  using 
strategy p i  and any other strategy p 0  defining a society S ′

=S(1: p 0 ; u 1 : p 1 ;… ; u i −1: p i :… ; u n : p n )  we have , for the individual x
′  in S′  with strategy p 0 . This translates to the condition: for every strategy p 0 , we have 
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In the case of a homogeneous society (n=1) , this is equivalent to 
g ( w ) ( p 0 : p 1 )≤g ( w ) ( p 1 : p 1 )  
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which is a condition in the limit of ESS as defined in  [6]. 

3.2. 
We recall that a strategy p=({ a 0 , a 1 ,… , a n } , f 0 , f 1 , s )  is nice   if s ( a 0 )=1  and s ( f 1 ( a j ) )=1 , 
for 1≤ j≤n ;p  is retaliatory   if s ( f 0 ( a j ) )=0 , for 1≤ j≤n . We shall say that p  is w -self-
supportive   if g ( w ) (p :p )>0 . 



Lemma. 
Let  p ,p′be two strategies. Then 
(i) 

Always  g ( w ) (p :p )≤R . If  p is nice, then  g ( w ) (p :p )=Rand hence  p is  w -self-supportive. 
(ii) 

If  pand  p′are retaliatory, then either  g ( w ) (p :p′ )=Ror  g ( w ) (p :p′ )≤0 . 
(iii) 

If  p is retaliatory, then  p is  w -self-supportive if and only if  g ( w ) (p :p )=R . 
Proof. 
(i) The cycle in t (p :p )  has a  arrows of the form 1:1  and b  of the form 0:0 . 

Then . If the strategy p  is nice, when paired with itself, 
it will cooperate indefinitely, resulting in the average pay-off of R . 
(ii) The cycle in t (p :p ′ )  has a  arrows of the form 1:1 , b  of the form 0:0 , c  of the 

form 0:1  and d  of the form1:0 . Then . If both p  and p
′  are retaliatory, then b>0  implies that a=c=d=0and g ( w ) (p :p ′ )<0 . If c>0 , 

then c=d  and a=b=0 , implying that . Indeed, in this case, the 
tournament-cycle has an arrow corresponding to the outcome 0:1  which implies that 0:0  is not a 
possible outcome, by the first considered case. Then after 0:1 , the second player retaliates and 
only 1:0  is a possible outcome. This repeats over to show that there are the same number 
of 0:1  outcomes as 1:0outcomes in the cycle, or c=d . Similarly, if d>0 , 

then b=d  and a=c=0  and . 
(iii) follows from (i) and (ii).  □ 

Proposit ion 3.3. 
Let  p 1 ,… , p n be retaliatory strategies such that  g ( w 0 ) ( p i : p j )≥0 , for any  1≤ i ,  j≤nand some 
admissible weight  w 0 . 
Then  S( u i : p i | i=1 ,… ,n) is  w -stable for any admissible weight  wand any vector  u∈N n . 
Proof. 
By 3.2, for any admissible weight w=(T ,R ,P ,S ) , we have g ( w ) ( p i : p j )=R , for all 1≤ i , j≤n , and 
for any other strategy p 0 , we have g ( w ) ( p 0 : p i )≤R . Then 
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 □ 



4. Successful societies 

4.1. 
Let w=(T ,R ,P ,S )  be an admissible weight. Let p 1 ,… , p n  be deterministic strategies 
and G ( w ) =(g ( w ) ( p i : p j ) )  the terminal pay-off  n×n -matrix. 
Let S=S( u i : p i | i=1 ,… ,n)  be a society corresponding to the given strategies. Then an 

individual x  in S  is said to be w -successful in the society  S  if the terminal pay-off 
. If x  uses the strategy p i , this is equivalent to 
( G ( w ) u ) i≥g ( w ) ( p i : p i ) ,  
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where u  is the column vector with i th entry u i , that is, the individual x  gets a higher pay-off from 
being part of the society S  than if it were to form a society with individuals playing the same 
strategy p i . 
Proposit ion. 
The society  S=S( u i : p i | i=1 ,… ,n) is  w -successful if and only if 
G ( w ) u≥g ( w )  
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where  g ( w ) is the column vector whose  i th entry is  g ( w ) ( p i : p i ) . □ 

4.2. 
Consider the vector space V=R n . A cone  K  in V  is a closed subset satisfying: (i) 0∈K , 
(ii) for v∈K  andλ≥0 , then λv∈K , (iii) if v ,v ′∈K , then v+v ′∈K . The cone K  is said to 
be proper   if K∩ (−K)={0}  and is said to be solid   if it contains a basis of V . 
The set V +  of vectors v  with non-negative coordinates is a solid proper cone in V . Given a linear 
transformation A:V→V  and a cone K⊂V , the image A(K)  and the preimage A − 1 (K)  are 
cones. The interior V 0  of V +  is formed by those v∈V +  such that v i >0  for every 1≤ i≤n , we 
write 0≪v  for v∈V 0 . 
Theorem. 
Let  p 1 ,… , p n be deterministic  w -self-supportive strategies and  G ( w ) =(g ( w ) ( p i : p j ) )be the terminal 
pay-off matrix. The following are equivalent: 
(a) 

There exists a society  S( u i : p i | i=1 ,… ,n)which is  w -successful. 
(b) 

There exists a vector  0≪u∈R n such that  G ( w ) u≫0 . 
(c) 

(G ( w ) ) − 1 (V + )∩V + is a solid cone. 
Proof. 



(a) ⇒  (b): If S( u i : p i | i=1 ,… ,n)  is w -successful, then G ( w ) u≥g ( w )≫0  because all p i  are self-
supportive strategies. For the converse, observe that by continuity, we may assume 
that 0≪u∈Q n  and G ( w ) u≫0 . Then for some natural number m , we 
get 0≪v≔mu∈N n  and G ( w ) v=mG ( w ) u≥g ( w ) . 
(b) ⇒  (c): Clearly, (G ( w ) ) − 1 (V + )∩V +  is a cone and there is a number ε>0  such that for any 
vectorv∈R n , ǁ‖v−u ǁ‖<ε , then v≫0  and G ( w ) v≫0 . Then the ball B ε (u )⊂ (G ( w ) ) −

1 (V + )∩V +  and the cone(G ( w ) ) − 1 (V + )∩V +  is solid. The implication (c) ⇒  (b) is clear.  □ 

4.3. 

Let p 1 ,… , p n  be deterministic strategies. Consider the symmetric 

matrix  and 
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the associated quadratic form. 
Recall from the Introduction that the society S=S( u i : p i | i=1 ,… ,n)  is w -macro-successful 

if , for any selection of individuals x i  using the 
strategy . Obviously a w -successful society is w -macro-successful. 
Corol lary. 
Let  p 1 ,… , p n be strategies and let  S=S( u i : p i | i=1 ,… ,n)be a society. Then  S is  w -macro-

successful if and only if  . Moreover, this number is 
positive if all strategies  p 1 ,… , p n are  w -self-supportive. 
Proof. 
Let x i  be an individual in S  using strategy p i . Observe that 
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The claim follows.  □ 

4.4. 



We shall say that the deterministic strategies p 1 ,… , p n  are w -compatible   if for 

vectors ( u 1 ,… , u n )∈N n with big enough  we get 
societies S( u i : p i | i=1 ,… ,n)  which are w -macro-successful. We characterize compatible 

strategies by properties of the associated quadratic form and then 
by simple properties of the symmetric matrix A ( w ) ( p 1 ,… , p n ) . 
Theorem. 
Let  p 1 ,… , p n be deterministic strategies. Then the following are equivalent: 
(a) 

p 1 ,… , p n are  w -compatible. 
(b) 

is weakly positive, i.e. for every vector  0≠v∈R n with non-

negative coordinates we have  . 
Proof. 
(a) ⇒  (b): Assume p 1 ,… , p n  are w -compatible and let 0≠v∈N n . Consider m∈N  such 

that w≔mv  has  big enough. Then S( w i : p i | i=1 ,… ,n)  is w -macro-successful and 

by 4.3, 
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(b) ⇒  (a): Consider the compact set C={v∈R n :0≤v  and ǁ‖v ǁ‖=1} . The hypothesis implies that 

the form  reaches a minimum γ>0  in C  and the linear 

form  reaches a maximum δ . Then for any 
vector u=( u 1 ,… , u n ) t∈N n  with 
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we have 
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Therefore ǁ‖u ǁ‖≤δ /γ  and only finitely many vectors u∈N n  may have this property. Therefore 

for  we have , that is, S( u i : p i | i=1 ,… ,n)  is w -
macro-successful.  □ 



4.5. 
There are good criteria to decide whether or not the quadratic form q(x )=x t Ax , associated to a 
symmetric n×n  matrix A , is weakly positive. The following is a simple generalization of a result 
by Zel’dich [10] (see also [3]). 
Proposit ion. 
Let  Abe a symmetric matrix and  q(x )=x t Ax the associated quadratic form. The following are 
equivalent: 
(a) 

q(x ) is weakly positive. 
(b) 

For every principal submatrix  of  A , either  de tB>0or the adjoint 

matrix  is not positive (that is, it has an entry  ≤0 ). 
Proof. 
(a) ⇒  (b): Let B  be a principal submatrix of A . Suppose that  is positive. By Perron 

theorem,  for a vector 0≠v≥0  and the spectral radius ρ>0 . 

Then  and de tB>0 . 
(b) ⇒  (a): We show that q(x )  is weakly positive by induction on n . Since property (b) is inherited 
to principal submatrices, we get that the restriction q ( i )  associated to the principal 
submatrix A ( i , i )  is weakly positive, i=1 ,… ,n . 
Assume that q  is not weakly positive. Then there is a vector 0≪w  with q(w)≤0 . 
We claim   that q ( i )  is positive for all 1≤ i≤n . Otherwise, q ( i ) ( x )≤0  for some vector 0≠x∈R n − 1 . 
Sinceq ( i )  is weakly positive, then x a >0  and x b <0  for indices a ,b . We may 
consider y∈R n  with y j = x j  for j≠ iand y i =0 . 
We find two points w+λ 1 y  and w+λ 2 y  in the boundary ∂V +  of the positive cone V +  in R n . Hence 
the parabola q(w+λy )=q(w)+λw t Ay+λ 2 q(y )  takes values >0  (resp. ≤0 , >0 ) in λ= λ

1  (resp. λ=0 ,λ= λ 2 ). Hence q(w+λy )  takes positive values for λ≥ λ 2 . 
Therefore 0<q(y )=q ( i ) ( x )≤0 , a contradiction proving the claim. 
In particular, every proper principal submatrix B  of A  has de tB>0 . Since A  is not 

positive, de tA≤0 . By hypothesis,  is not positive. Assume that the j th row v  of  is 
not positive. Choose λ≥0  such that0≤λw+v  lies on ∂V + . Hence 
0<q(λw+v)=λ 2 q(w)+λw t Av+q(v )≤λ (de tA ) w j +(de tA) v j≤ (de tA) (de tA ( j , j ) )≤0 ,  
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since by the claim q ( j )  is positive. This contradiction completes the proof of the result.  □ 

5. Dependence on the admissible weights 



5.1. 

In this section we shall discuss in which way the former results depend on the fixed admissible 
weight wwith which the IPD is played. The discussion is motivated by remarks of a referee of the 
paper. 
Let w=(T ,R ,P ,S )  satisfying be an admissible weight  . Given p  and p ′  two deterministic 
strategies, we denote by g ( w ) (p :p ′ )  the relative pay-off of p  playing the IPD with initial 
conditions w  against p′ . 

Lemma. 
The set of admissible parameters  w∈R 4 satisfying  g ( w ) (p :p′ )≥0 together with the origin 0 form 
a cone  C(p:p′ ) in  R 4 . Moreover: 
(i) The cone  C(p:p′ ) is either  0or a solid cone. 
(ii) If  C(p:p′ )=0 then for any admissible tuple  wwe get  g ( w ) (p :p′ )≤g ( w ) (p′ :p ) , that is, the 
pay-off of an individual playing the strategy  p is lower than the pay-off of another playing the 
strategy  p′ , independently of the initial conditions. 
(iii) If  C(p:p′ ) is a solid cone then the point  u=(1 ,1 ,0 ,−1)belongs to the topological closure 
of  C(p:p′ ) . 
Proof. 
Observe that for w , w ′  admissible parameters and r>0  we get admissible parameters w+w
′  and rw  such that g ( w + w ′ ) (p :p′ )=g ( w ) (p :p′ )+g ( w ′ ) (p :p′ )  and g ( r w ) (p :p′ )=rg ( w ) (p :p′ ) . 
Hence C(p:p′ )  is a cone. 
Let a  (resp. b , c  and d ) be the number of arrows in the tournament-cycle of t (p :p ′ )  with 
outcome 1:1 (resp. 0:0 , 0:1  and 1:0 ). Then for w=(T ,R ,P ,S )  we 

have . 
(i) Assume that C(p:p ′ )  is not trivial and let 0≠w=(T ,R ,P ,S )∈C(p:p ′ ) . 
Then T>R>0>P>S . If botha=0  and c=0 , then also b=0=d . Therefore C(p:p ′ )=R 4 . 
Assume that a>0  then, by slightly modifyingR , we get a point w′∈C(p:p′ )  such that g ( w ′

) (p :p ′ )>0 . We do not lose generality assuming that w=w ′ . Then there are small 
values r>0  such that any E∈R 4  with 
norm |E |<r  satisfiesa(R+ E 1 )+b(P+ E 2 )+c(T+ E 3 )+d(S+ E 4 )>0 , that is the sphere with 
center w  and radius r  lies inC(p:p′ ) . Therefore C(p:p′ )  is a solid cone. 
(ii) With the notation above, C(p:p ′ )=0  implies a=0=c . Then for any admissible w  we 

get . 
(iii) Let 0≠w=(T ,R ,P ,S )∈C(p:p ′ ) . As in (i) we may assume that g ( w ) (p :p ′ )>0 . 
Then0<aR+bP+cT+dS≤ (a+c)T+dS≤ [− (a+c)+d]S , which implies that a+c>d . There 

is a sequence of admissible tuples , for n  big enough, 
with g ( w n ) (p :p′ )>0 .  □ 



5.2. 
Let p=( p 1 ,… , p n )  be a sequence of strategies. We introduce an equivalence relation ∼ p  in the set 
of all admissible weights in the following way: for w=(T ,R ,P ,S )  and w ′ =(T ′ ,R ′ ,P ′ , S ′

)  admissible weights we write w ∼ p w ′  if for any couple 1≤ i , j≤n  the 
inequality g ( w ) ( p i : p j )>0  (resp. =0,<0 ) happens exactly when g ( w ′ ) ( p i : p j )>0  (resp. =0,<0 ) 
holds. Observe that this means that w  and w ′  belong to the same sequence of half-spaces 
in R 4  determined by the hyperplanes H i , j  defined by the linear 
equationa i , j R+ b i , j P+ c i , j T+ d i , j S=0 , where a i , j  (resp. b i , j , c i , j , d i , j ) denotes the number of the 
tournament-cycle of t ( p i : p j )  with outcome 1:1  (resp. 0:0 , 0:1 , 1:0 ). 
Proposit ion. 
There is only a finite number of  ∼ p -equivalence classes of admissible weights. For each 
equivalence class  C the topological closure  in  R 4 is a convex cone. The cone  is solid if 
and only if  C is an open set. 
Proof. 
The complement in R 4  of the union of all hyperplanes H i , j , for pairs 1≤ i , j≤n , is formed by a finite 
number of open subsets U 1 ,… , U s . For any i=1 ,… ,s , two points in the open set U i  are ∼ p -
equivalent. The other equivalence classes are the different walls of the topological closures of 
the U i , for i=1 ,… ,s . 

Clearly, if C  is an equivalence class, then its closure satisfies: (i) ; (ii) 

for  and λ≥0 , then  and (iii) if , then . If C  is open, it 
clearly contains a basis of R 4  and  is solid. For the converse, observe that if  is solid, then 
there is an open ball B r ( x )  contained in C . Then C= U i  for some 1≤ i≤ s .  □ 
Any ∼ p -equivalence class whose topological closure contains the (non-admissible) 
weight (1 ,1 ,−1 ,−1) is called a canonical class. 

Corol lary. 
There is a canonical class which is open. If  w is an admissible weight in a canonical class, then 
for any pair  1≤ i , j≤n , the inequality  g ( w ) ( p i : p j )≥0 implies that  a i , j + b i , j≥ c i , j + d i , j in the 
tournament-cycle of  t ( p i : p j ) . 
Proof. 
Observe that the points (1+λ 1 , 1−λ 2 ,−1+λ 3 ,−1−λ 4 )  with 0<λ 1 <λ 2 <λ 3 <λ 4 <1  form a set of 
admissible weights that cannot be contained in a finite set of non-solid cones. Hence some of 
these weights lie in a canonical class. The second claim follows by continuity.  □ 

5.3. 

Let again p=( p 1 ,… , p n )  be a sequence of strategies and consider a 
society S=S( u i : p i | i=1 ,… ,n) . Letx i  be an individual in S  playing the strategy p i , for i=1 ,… ,n . 
As above, define ∼ ( S , i )  be the equivalence relation in the set of admissible weights such that w ∼

( S , i ) w′  if both x i  is w -successful and w′ -successful in the society S . By the arguments in 5.2, 



there are finitely many ∼ ( S , i ) -equivalence classes C i , 1 ,… , C i , s i  of admissible weights. Consider a 

set C  of admissible weights of the form , for some 1≤ t 1≤ s 1 ,… ,1≤ t n≤ s n , then two 
weights w,w′  in C  satisfy the following properties: 
(a) Let x  be an individual in S , then x  is w -successful in S  if and only if it is w′ -successful in S . 
Denote byE S (w)  the set of indices i  such that an individual x  playing the strategy p i  is w -
successful. HenceE S (w)= E S (w′ ) . 
(b) The society S  is w -successful if and only if it is w′ -successful. In that case E S (w)={1 ,… ,n} . 
(c) Moreover, the topological closure  of C  in R 4  is a cone. 

Corol lary. 
There is a finite partition  C 1 ,… , C m of the admissible weights such that the following holds: 

(i) the closure  of each  C i is a convex cone; 
(ii) for any two admissible weights  w,w′ ,  E S (w)= E S (w′ ) if and only if  wand  w′belong to the 
same set  C i for some  i . 

6. Examples 

6.1. 
For the next examples we fix values T=2 , R=1 , P=−1 , S=−3 . Consider p  the strategy tit-for-
tat and p′ the strategy given by the digraph 

 
Turn MathJaxon  

 
The tournament t (p :p′ )  is indicated above. The pay-off matrix G  is 

 



Turn MathJaxon  

 

Then  is satisfied when 

 
Turn MathJaxon  

 
For example, a society S(x :p ,y :p′ )  with x=y≥2  is successful, while S(x :p ,2x :p′ )  is not 
successful. 
The associated quadratic form is 

 
Turn MathJaxon  

 
which is positive. Then a society S(x :p ,y :p′ )  with x+y≫0  is macro-successful (that 
is, p  and p′  are compatible). 

6.2. 
Consider p  the strategy PAV and p′  the strategy given by the digraph 

 
Turn MathJaxon  

 
With the values of T ,R ,P  and S  as in 6.1, the pay-off matrix G  is 



 
Turn MathJaxon  

 

Then . For example, S(3y :p ,y :p′ ) , with y≥2 , 

is a successful society. 
The associated quadratic form is 

q(x ,y )=x 2 −2xy+y 2 =(x−y ) 2  

Turn MathJaxon  

 
which is not weakly positive. Therefore p  and p′  are not compatible. 

6.3. 

Consider p  the intolerant strategy I 0  and p′=({ b 0 , b 1 ,… , b m } , f 0 , f 1 , s )  any strategy. Observe that 
in case α i =1:0  in the tournament t (p :p′ ) , then α j =0:ε j  for some ε j∈ {0 ,1}  and any j≥ i+1 . 

Then  and  for some b ,c≥0  and b+c=c(p :p ′

) . With the assignment of parameters given 

in 6.1,  and . Otherwise, 
all  andg(p :p ′ )=g(p ′ :p )=R=1 . In the first case, the associated 
quadratic form is 

 
Turn MathJaxon  

 
which is weakly positive if and only if g(p′ :p′ )=1  and b=0 . In conclusion, given a self-
supportive strategy p′ , the strategies p  and p′  are compatible if either g(p :p′ )=1=g(p′

:p )  and then any societyS(x :p ,y :p′ )  is successful or if g(p :p′ )=2 , g(p′ :p )=−3  and g(p′

:p′ )=1  and then, only societiesS(x :p ,y :p′ )  with y≥3x+1  are successful. 
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